Extensions 1→N→G→Q→1 with N=C3 and Q=C23.9D6

Direct product G=NxQ with N=C3 and Q=C23.9D6
dρLabelID
C3xC23.9D648C3xC2^3.9D6288,654

Semidirect products G=N:Q with N=C3 and Q=C23.9D6
extensionφ:Q→Aut NdρLabelID
C3:1(C23.9D6) = C62.23C23φ: C23.9D6/Dic3:C4C2 ⊆ Aut C348C3:1(C2^3.9D6)288,501
C3:2(C23.9D6) = C62.24C23φ: C23.9D6/C4:Dic3C2 ⊆ Aut C348C3:2(C2^3.9D6)288,502
C3:3(C23.9D6) = D6.9D12φ: C23.9D6/D6:C4C2 ⊆ Aut C396C3:3(C2^3.9D6)288,539
C3:4(C23.9D6) = C62.117C23φ: C23.9D6/C6.D4C2 ⊆ Aut C348C3:4(C2^3.9D6)288,623
C3:5(C23.9D6) = C62.227C23φ: C23.9D6/C3xC22:C4C2 ⊆ Aut C3144C3:5(C2^3.9D6)288,740
C3:6(C23.9D6) = C62.75C23φ: C23.9D6/S3xC2xC4C2 ⊆ Aut C396C3:6(C2^3.9D6)288,553
C3:7(C23.9D6) = C62.111C23φ: C23.9D6/C2xC3:D4C2 ⊆ Aut C348C3:7(C2^3.9D6)288,617

Non-split extensions G=N.Q with N=C3 and Q=C23.9D6
extensionφ:Q→Aut NdρLabelID
C3.(C23.9D6) = C23.9D18φ: C23.9D6/C3xC22:C4C2 ⊆ Aut C3144C3.(C2^3.9D6)288,93

׿
x
:
Z
F
o
wr
Q
<